Contents
Download PDF
pdf Download XML
196 Views
59 Downloads
Share this article
Research Article | Volume 14 Issue: 3 (May-Jun, 2024) | Pages 543 - 548
Prevalence of Hypertension in Type-2 Diabetes Mellitus
 ,
 ,
 ,
1
Senior Resident, Department of Anesthesia, Mysore Medical college and research Institute, Mysore.
2
Assistant Professor, Dept of OBG, HIMS Hassan.
3
Senior resident, Dept of General Medicine, HIMS, Hassan.
4
Associate professor, Dept of General Medicine, HIMS, Hassan
Under a Creative Commons license
Open Access
DOI : 10.5083/ejcm
Received
April 2, 2024
Revised
May 7, 2024
Accepted
May 10, 2024
Published
May 30, 2024
Abstract

Background:  Aim: To study the prevalence of hypertension in type-2 diabetic patients. To study the association with hypertension and diabetic complications. Materials and Methods:  A cross sectional study consist of total 250 diabetic patients coming to Hassan Institute of Medical Sciences Hospital and College, Hassan were studied and evaluated for BP, and macro vascular and micro vascular complication. All type-2 diabetic patients who are on treatment for diabetes were included. Results: Prevalence of hypertension noted in 64 (25.6%) patients.  Blood pressure was normal in 55 (22%), 131 (52.4%) patients were prehypertensive, 45 (18%) patients were in stage-1 hypertension and 19(7.6%) had stage-2 hypertension. Conclusion: Macro vascular complications noted in 120 (48%) and micro vascular complications noted in 60 (24%) patients.

 

Keywords
INTRODUCTION

Diabetes mellitus is a common and a serious disease with chronic complications and constitutes a substantial burden for both patient and health care system. According  to the International Diabetes Federation (IDF) Diabetes Atlas 2011, the number of people living with diabetes is expected to rise from 366 million in 2011 to 552 million by 2030 if preventive programmes are not put in place.[1]The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. [2]

 

Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes worldwide, accounting for 90% of cases globally.[3] Sex, age, and ethnic background are important factors in determining the risk of developing T2DM. [4] A disturbing trend has become apparent in which the prevalence of obesity and T2DM in children is raising dramatically. [5] Cardiovascular disease is the major cause of morbidity and mortality among diabetic patients, accounting for 75% of hospitalizations and 70– 80% of deaths. [6][7] In fact, coronary heart disease (CHD) is the leading cause of death among diabetic patients, who have a two- to fourfold higher risk of CHD mortality and incidence of nonfatal CHD events compared with patients without diabetes. [8]

 

Diabetes mellitus and hypertension are interrelated diseases that strongly predispose an individual to atherosclerotic cardiovascular disease. [11][12] Hypertension is about twice as frequent in individuals with diabetes as in those without. [12] The prevalence of coexisting hypertension and diabetes appears to be increasing in industrialized nations because populations are aging and both hypertension and NIDDM incidence increases with age.[11][12] Indeed, an estimated 35% to 75% of diabetic cardiovascular and renal complications can be attributed to hypertension.[11][12] Hypertension also contributes to diabetic retinopathy, which is the leading cause of newly diagnosed blindness.[12] For all these reasons, hypertension and diabetes should be recognized and treated early and aggressively. Chenet al [19] stated that hypertension to account for 30% of deaths in diabetes patients and for 25% of cardiovascular events in diabetes patients. In contrast, when hypertension and diabetes mellitus were regarded as independent, the population-attributable risk from diabetes mellitus was only 7% for all-cause mortality and 9% for any major atherosclerotic cardiovascular event.

MATERIALS AND METHODS

It was a cross sectional study in patients with type-2 diabetes mellitus patients, who visited medicine outpatient department Hassan Institute of Medical Sciences and hospital, Hassan. The patients were included in the study according to inclusion criteria. Samples were drawn randomly; there was no cut off age or BMI.  The duration of the study was 3months and for an individual patient, duration of the study was one day. There were no study specific visit and the data was recorded during their routine visit to the outpatient department. Detailed history of all the patients regarding the duration of Diabetes, mode of diagnosis was asked. Detailed history regarding personal habits like smoking, alcoholism, tobacco-chewing was noted. Information about family history of Diabetes was recorded. General and systemic examination was done for each study subject.

 

Physical examination was undertaken after the interview was over. It included height, weight and blood pressure. For recording blood pressure, students were individually called in a room and were allowed to be seated quietly for 5-10 minutes to alley anxiety and restlessness. Blood pressure was recorded in sitting position in right arm, using a standard mercury sphygmomanometer with appropriate cuff size. Systolic blood pressure was determined by the onset of the “tapping” Korotkoff sounds (K1) and fifth Korotkoff sound (K5), or the disappearance of Korotkoff sounds, was recorded as Diastolic blood pressure. Hypertension was defined as

 

Average of two readings recorded 3 minutes apart on two separate occasions that are greater than or equal to SBP 140 and/or DBP 90 mm of Hg. Data was collected and entered in master sheet and statistically analysed using statistics software SPSS.

RESULTS

A total of 250 patients were included in the study. Among which 139 (55.6%) were males, 111 (44.4%) were females with male to female ratio of 1:1.256.

154 (61.6%) patients were in the age group of 41-60years with mean age of years [GRAPH-1].

 

 

GRAPH-1: AGEWISE DISTRIBUTION OF SAMPLE SIZE

 

86 (34.4%) were of normal BMI, 73 (29.2%) were overweight and 85 (34%) are obese [GRAPH-2].

 

GRAPH-2: B.M.I. OF SAMPLE SIZE

 

Prevalence of hypertension noted in 64 (25.6%) patients. Hypertension was present in 36(56.25%) females and 28 (43.75%) males. Blood pressure was normal in 55 (22%), 131 (52.4%) patients were prehypertensive, 45 (18%) patients were in stage-1 hypertension and 19(7.6%) had stage-2 hypertension

 

GRAPH-3: BLOOD PRESSURE DISTRIBUTION AMONG SAMPLES.

 

TABLE-1: FREQUENCY OF DIABETIC COMPLICATIONS

 

COMPLICATIONS ( n=180/250)

 

 

FREQUENCY (72%)

MACROVASCULAR (n=120)

CAD

76 (38%)

CVD

12 (6%)

PVD

47 (23.5%)

MICROVASCULAR (n=60)

Neuropathy

22 (11%)

Nephropathy

88 (44%)

retinopathy

30 (15%)

 

 

 

 

 

 

 

 

Of 250 patients, 180 (72%) patients had various micro vascular and macro vascular related complications. Macro vascular complications noted in 120 (48%) and micro vascular complications noted in 60 (24%) patients. Frequency of complications is given in (table-1)

 

TABLE-2: PREVALENCE OF HYPERTENSION ACCORDING TO THE DURATION OF DIABETES

DURATION OF DIABETES

NO

PERCENTAGE

1-5 years

8

12.5%

5-10 years

17

26.56%

10-15 years

16

25%

>15 years

23

35.9%

Prevalence of hypertension according to the duration of diabetes is given in table-2.

DISCUSSION

In our study prevalence of hypertension noted in 64 (25.6%) patients. Priya et al [9] observed hypertension in 42.7% of the patients. In a study by Ramachandran et al, [10]38% study subjects were hypertensive. Hypertension was present in 36(56.25%) females and 28 (43.75%) males. Nephropathy was present in 88 (44%) patients. In that 50 (56.18%) patients had hypertension.

 

Essential hypertension accounts for the majority of hypertension in individuals with diabetes, particularly those with type II diabetes, who constitute more than 90% of people with a dual diagnosis of diabetes and hypertension. [11][12]

Hypertension in insulin resistance states is generally attributed to hyperinsulinemia, with resulting increases in renal sodium retention and/or sympathetic nervous system activity. Hyper insulinemia induces hypertension through increased renal tubular reabsorption of sodium and water, increased sympathetic nervous system activity, proliferation of vascular smooth muscle cells, and alterations of trans membrane cation transport. At physiological concentrations, insulin decreases urinary sodium excretion, an action mediated by binding to specific high-affinity receptors. [20] However, recent data suggest that cellular insulin resistance, rather than hyperinsulinemia per se, may lead to hypertension.[13]Recent observations suggest that impaired cellular response to insulin pre-disposes to increased vascular smooth muscle (VSM) tone (the hallmark of hypertension in the diabetic state). For example, recently reported studies from laboratory demonstrate that insulin in physiological doses attenuates the vascular contractile response to phenylephrine, serotonin, and potassium chloride. Thus, insulin appears to normally modulate (attenuate) VSM contractile responses to vasoactive factors, and insulin resistance should accordingly be associated with enhanced vascular reactivity. [13]

Abnormal VSM cell calcium [Ca2+li homeostasis may be the nexus between insulin resistance and increased VSM tone. Insulin stimulates membrane Ca-ATPase, blocks Ca2++ currents, and Ca2++-driven action potentials. Thus, an insulin-resistant state as exists in the Zucker rat may be associated with increased Ca2++ influx through voltage-dependent sarcolemma Ca2++ channels and/or decreased production or activation of the VSM cell Ca-ATPase pump. The resulting sustained rise in VSM [Ca2++] i could then account, in part, for increased VSM tone characteristic of hypertension associated with non-insulin- dependent diabetes mellitus. [13]

 

The overabundance of oxidants is mechanistically connected with the multifactorial etiology of insulin resistance, primarily in skeletal muscle tissue, and the subsequent development of type 2 diabetes. Two important mechanisms for this oxidant excess are 1) the mitochondrial overproduction of hydrogen peroxide and superoxide ion in conditions of energy surplus and 2) the enhanced activation of cellular NADPH oxidase via angiotensin II (AT1) receptors. Several recent studies are reviewed that support the concept that direct exposure of mammalian skeletal muscle to an oxidant stress (including hydrogen peroxide) results in stimulation of the serine kinase p38 mitogen-activated protein kinase (p38 MAPK), and that the engagement of this stress-activated p38 MAPK signalling is mechanistically associated with diminished insulin-dependent stimulation of insulin signalling elements and glucose transport activity. The beneficial interactions between the antioxidant α-lipoic acid and the advanced glycation end product inhibitor pyridoxamine to ameliorate oxidant stress-associated defects in whole-body and skeletal muscle insulin action in the obese Zucker rat, a model of pre-diabetes, are also addressed. It emphasis the importance of oxidative stress in the development of insulin resistance in mammalian skeletal muscle tissue, at least in part via a p38 MAPK-dependent mechanism, and indicates that interventions that reduce this oxidative stress and oxidative damage can improve insulin action in insulin-resistant animal models. Strategies to prevent and ameliorate oxidative stress remain important in the overall treatment of insulin resistance and type 2 diabetes. [21]

Hypertension often antedates and likely contributes to the development of nephropathy in many diabetic individuals.[14][15] Diabetic nephropathy, which occurs after 15 years of diabetes in one third of people with IDDM (type I diabetes) and 20% of those with NIDDM, is an important contributing factor to the development of hypertension in the diabetic individual.[11] The high BP associated with diabetic nephropathy is usually characterized by sodium and fluid retention and increased peripheral vascular resistance.[12] Isolated systolic hypertension is considerably more common in diabetics, and supine hypertension with orthostatic hypotension is not uncommon in diabetic individuals with autonomic neuropathy.[11]

Although hypertension and diabetes mellitus are both independent risk factors for ischemic heart disease, insulin resistance and hyperinsulinemia associated with hypertension and NIDDM also likely contribute to accelerated atherogenesis.[16][17][18]

 

Hypertension is acknowledged to be a major risk factor in the progression of diabetic renal disease.[12] Diabetic nephropathy, defined as the appearance of proteinuria, elevated arterial BP, and diminished GFR, will develop in as many as 40% of IDDM patients.[12]

CONCLUSION

From the above study we would like to conclude that, the prevalence of hypertension is increasing in patients with diabetes mellitus due to increased insulin resistance. The presence of hypertension along with diabetes mellitus increases the complications and 2 fold rises in cardiovascular diseases related mortality. The complications of diabetes increases in the presence of hypertension. Early evaluation for hypertension and periodic evaluation of patient with pre hypertension, applying life style modifications and prompt treatment of hypertension and hyperglycaemia will favours the good outcome. Limitations of the study: since the samples were drawn randomly, we cannot identify the presence of hypertension is due to diabetes or pre-existing hypertension. 

REFERENCES

 

  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res ClinPract 2011;94:311-21.
  2. Wild S, Roglic G, Green A. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes care 2004;27(5):1047-53.
  3. Zimmer P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-787.
  4. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res ClinPract. 2010; 87:4-14.
  5. American Diabetes Association. Type 2 diabetes in children and adolescents. Diabetes Care. 2000; 23: 381-389.
  6. Goldberg RB, Capuzzi D: Lipid disorders in type 1 and type 2 diabetes. Clin Lab Med 21:147–172, 2001
  7. Wingard DL, Barrett-Connor E: Heart disease and diabetes. In Diabetes in America. 2nd ed. Bethesda, MD, National Diabetes Data Group, National Institutes of Health,1995:429–448
  8. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234, 1998
  9. Priya D., Dudhal K., Khakse GM, Meshram R., Hiwarkar PA and Wahab SN. Prevalence of Hypertension among Type 2 Diabetes Patients. International Journal of Science, Environment and Technology, Vol. 2, No 6, 2013, 1401 – 1406
  10. Ramachandran A, Snehalatha C, Vishwanath V. Burden of type 2 diabetes and its complications – the indian scenario. Current sciene.2002;83:1471-6
  11. Epstein M, Sowers JR. Diabetes mellitus and hypertension. Hypertension. 1992;19:403-418.
  12. The National High Blood Pressure Education Program Working Group. National High Blood Pressure Education Program Working Group report on hypertension in diabetes. Hypertension. 1994;23:145-158.
  13. James R sowers, slemankhoury, Paulstandely. A double blind comparison of the effects of amlodipine and enalapril on insulin sensitivity in hypertensive patients Am J Hypertens(1999) 12 (3): 298-303
  14. Mogensen CE. Prevention and treatment of renal disease in insulin-dependent diabetes mellitus. SeminNephrol. 1990;10:260-273.
  15. Mykkänen L, Haffner SM, Kuusisto J, Pyorälä K, Laakso M. Microalbuminuria precedes the development of NIDDM. Diabetes. 1994;43:552-557.
  16. Chwartz CJ, Valente AJ, Sprague EA, Kelley JL, Caryatte AJ, Rozels M. Pathogenesis of the atherosclerotic lesion: implications for diabetes mellitus. Diabetes Care. 1992;15:1156-1167.
  17. Ramirez LC, Arauz-Pacheco C, Lackner C, Albright G, Adams BV, Raskin P. Lipoprotein (a) levels in diabetes mellitus: relationship to metabolic control. Ann Intern Med. 1992;117:42-47.
  18. Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. ProcNatlAcadSci U S A. 1993;90:6434-6438.
  19. Chen G, McAlister FA, Walker RL, Hemmelgarn BR, Campbell NRC.Cardiovascular outcomes in framingham participants with diabetes: theimportance of blood pressure. Hypertension. 2011;57:891– 897.
  20. Sechi LA, Bartoli E.Molecular mechanisms of insulin resistance in arterial hypertension http://www.ncbi.nlm.nih.gov/pubmed/9162438
  21. Erik J. Henriksen, Maggie K. Diamond-Stanic, and Elizabeth M. Marchionne.Oxidative Stress and the Etiology of Insulin Resistance and Type 2 Diabetes.FreeRadicBiol Med.sep1 2011;51(5):993-9

 

Recommended Articles
Research Article
A Comparative Observational Study On The Efficacy Of Labetalol Vs Methyldopa On Obstetric Outcome In Women With Pre-Eclampsia
...
Published: 12/10/2024
Download PDF
Case Report
Atypical Coronary Anatomy in a Young Patient: Diagnostic Challenge of an Absent Right Coronary Artery
...
Published: 12/10/2024
Download PDF
Research Article
“Association of Thyroid Profile with severity of Acute Coronary Syndrome in Elderly Patients”
Published: 12/10/2024
Download PDF
Research Article
Evaluation Of Antithrombin Iii Levels In Patients Undergoing Cardiovascular Surgery And Percutaneous Coronary Intervention
...
Published: 12/10/2024
Download PDF
Chat on WhatsApp
Copyright © EJCM Publisher. All Rights Reserved.